

LA-UR-15-20717

Approved for public release; distribution is unlimited.

Title: Quarkonia Production in p+p, d+Au and A+A from PHENIX

Author(s): Brooks, Melynda Louise

Intended for: WWND 2015, 2015-01-26 (Keystone, Colorado, United States)

talk

Issued: 2015-02-02

Quarkonia Production in p+p, d+Au and A+A from PHENIX

Melynda Brooks
Los Alamos National Laboratory
For the PHENIX Collaboration

Heavy Flavor Production

Factorize calculations:

- pQCD to calculate cc production
- cċ propagation and hadronization

Note: much of J/Ψ production comes from feed-down from higher resonances, B

Possible Modifications beyond p+p production extrapolation:

- Parton Distribution Functions modified in nucleus?
- Energy loss of partons traversing nucleus
- Cronin modification of p_T spectra
- Breakup of charmonium before exiting nucleus
- Energy loss of partons traversing QGP
- Debye screening of charmonia by QGP
- If enough cc, can have charmonium production through coalescence
- Note heavy flavor kinematics differences

Upsilon

 Charmonia plus upsilon states covers large range of binding energies which can give indication of whether screening is occurring or not

The PHENIX Detector

PHENIX Data Sets

p+p (200 and 510 GeV)

• J/ψ , ψ' , Y at central and forward rapidities

d+Au (200 GeV)

- J/ψ , ψ ', χ_c Y at central rapidity
- J/ψ , Y at forward/backward rapidities

Cu+Cu, Cu+Au, (200 GeV), Au+Au (39, 62, 200 GeV)

- CuCu J/ ψ R_{AA} at forward/backward rapidities
- CuAu J/ψ R_{AA} at forward/backward rapidities
- AuAu J/ ψ R_{AA} at central and forward rapidities
- AuAu J/ ψ R_{cp} at 39, 62, 200 GeV, forward rapidities
- CuAu, AuAu ψ' at forward rapidities analysis underway
- AuAu Y at central rapidity

J/ψ in d+Au Collisions: Cold Nuclear Matter Effects

In d+Au collisions, rapidity-dependent R_{dA}

$$R_{dA} = \frac{dN/dy_{dAu}}{dN/dy_{pp}*N_{coll}}$$

 Forward rapidity shows more suppression than central/ backward rapidities. Centrality-dependent.

Possible explanations: gluon shadowing, nuclear breakup,

energy loss

However,

- We do not see x_2 scaling, which would be indicative of gluon shadowing
- Initial-state energy loss and final-state effects?

Comparing CNM for J/ψ, ψ'

- PHENIX: ψ' suppressed more than J/ψ at central rapidity, in d+Au. Time spent in nucleus (breakup) does not hold as explanation for PHENIX data.
- Universal trend with $dN_{ch}/d\eta$ for several systems, up to 200 GeV

Alice p-Pb data also seems consistent with this trend

Comparing CNM for J/ψ, ψ'

- Would like to more fully explore the trend with $dN_{ch}/d\eta$, but current data are limited (see below)
- New p+A and heavy ion data from forward rapidity will expand our coverage at RHIC
- Vertex Detectors allow us to explore trend versus event multiplicity

J/ψ:ψ' at Forward Rapidity

- PHENIX has a first J/ψ:ψ' result at forward rapidity from p+p 510
 GeV
- FVTX detector allows separation of J/ψ and ψ'
- Heavy Ion analysis underway. p+A data set coming.

pA Projections for Quarkonia

- Expect J/ψ measurements of significance for several nuclei
- p+Au will provide a good statistical measurement of ψ'

CNM for Open and Closed Heavy Flavor

- Open heavy flavor shows a different rapidity dependence from J/ψ
- Combination of initial-state and final-state effects or primarily final-state?
- The FVTX will allow more precise measurement to better quantify differences from Run 15 p+A

What About Upsilons?

- Possible suppression at backward rapidity (but error bars large)
- Forward rapidity may or may not be suppressed
- Challenging to make significantly better measurements with PHENIX. sPHENIX proposes to continue upsilon program.

System Size and CNM

- Suppression similar for smaller systems (CuCu) and larger (AuAu). Close to value extrapolated from dAu (modified PDF and breakup)
- Small rapidity dependence in CuAu, more consistent with CNM effects than QGP

J/ψ Heavy Ion Measurements

- J/ ψ suppression strikingly similar at SPS and RHIC despite different energies
- Rapidity dependence not initially expected: CNM effects bring forward down? Coalescence brings central up?
- \bullet p_T dependence does not show a strong effect

Energy Dependence Cont'd

- Explore energy dependence more at RHIC
- Don't see large change in suppression until LHC
- p_T dependence now looks consistent with coalescence picture

Heavy Ion ψ':J/ψ

- At LHC energies, the $J/\psi:\psi'$ ratio also seems to now deviate from linear trend.
- Another indication of coalescence atLHC? What will we see in RHIC heavy ion?

Figure 3: Double ratio (ratio of ratios in PbPb to pp) of $\psi(2S)$ and J/ψ as a function of centrality measured by CMS in two kinematic regions [19].

Upsilon Au-Au

• $R_{AA} \sim 0.65$ if no 2S, 3S

• $R_{AA} \sim 0.37$ if no 2S, 3S, χ_B

PHENIX consistent with 2S, 3S states both melt, if no other

suppression effects

arXiv:1404.2246 $\sqrt{s_{p_b p_b}} = 2.76 \text{ TeV}$ | y| < 2.4 \bigcirc CMS $\Upsilon(1S+2S)$ 1.4 40% Global Syst. Uncertainty PHENIX 1.2 25% Global Syst. Uncertainty CMS 0.8 0.6 0.4 0.2 50 100 150 250 300 350 200 part

What's Next at PHENIX?

- J/ψ:ψ' ratio in CuAu and AuAu at forward rapidity will we see any ψ'?
- J/ψ:ψ' ratio in p+A at forward and backward rapidity – will it follow same dN_{ch}/dη trend?
- J/ψ:ψ' ratio versus multiplicity
- Higher precision open heavy flavor, B/D separation

Summary

- Significant suppression of J/ψ in d-Au; x_2 dependence \rightarrow suppression not from gluon shadowing
- Extrapolation to heavy ion similar to what is measured except perhaps central AuAu → what might QGP suppression be? Can we reduce extrapolation errors?
- ψ' suppressed beyond J/ψ in d+Au, proportional to dN_{ch}/dη independent of energy→co-mover type effect, not nuclear medium?
- J/ψ suppression in heavy ion: similar N_{part} trend across energies, system-size until LHC where suppression is reduced → recombination?
- How much of J/ψ suppression might be due to QGP effects? Does ψ ' survive in heavy ion collisions at RHIC?